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Abstract 21 

Near real-time satellite-derived flood maps are invaluable to river forecasters and 22 

decision-makers for disaster monitoring and relief efforts. With support from the JPSS (Joint 23 

Polar Satellite System) Proving Ground and Risk Reduction (PGRR) Program, flood 24 

detection software has been developed using Suomi-NPP/VIIRS (Suomi National 25 

Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite) imagery to 26 

automatically generate near real-time flood maps for National Weather Service (NWS) River 27 

Forecast Centers (RFC) in the USA. The software, which is called VIIRS NOAA GMU Flood 28 

Version 1.0 (hereafter referred to as VNG Flood V1.0), consists of a series of algorithms that 29 

include water detection, cloud shadow removal, terrain shadow removal, minor flood 30 

detection, water fraction retrieval, and floodwater determination. The software is designed for 31 

flood detection in any land region between 80°S and 80°N, and it has been running routinely 32 

with direct broadcast SNPP/VIIRS data at the Space Science and Engineering Center at the 33 

University of Wisconsin-Madison (UW/SSEC) and the Geographic Information Network of 34 

Alaska at the University of Alaska-Fairbanks (UAF/GINA) since 2014. Near real-time flood 35 

maps are distributed via the Unidata Local Data Manager (LDM), reviewed by river 36 

forecasters in AWIPS-II (the second generation of the Advanced Weather Interactive 37 

Processing System) and applied in flood operations. Initial feedback from operational 38 

forecasters on the product accuracy and performance has been largely positive. The software 39 

capability has also been extended to areas outside of the USA via a case-driven mode to 40 

detect major floods all over the world. Offline evaluation efforts include the visual inspection 41 
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of over 10,000 VIIRS false-color composite images, an inter-comparison with MODIS 42 

automatic flood products and a quantitative validation using Landsat imagery. The steady 43 

performance from the 3-year routine process and the promising evaluation results indicate 44 

that VNG Flood V1.0 has a high feasibility for flood detection at the product level.  45 

Keywords: JPSS, SNPP/VIIRS, Near Real-time Flood Detection, VNG Flood V1.0 46 

1. Introduction 47 

As the costliest natural disasters worldwide, most climate change forecasts predict that 48 

floods will become increasingly frequent (Milly et al., 2002; Hirabayashi et al., 2008; Lehner 49 

et al., 2006). At high latitudes, floods are caused by ice jams and snow melt during almost 50 

every break-up season. Floods caused by intense rainfall also threaten the safety of human 51 

lives and property. Near real-time satellite-derived flood maps are invaluable to river 52 

forecasters and decision-makers for disaster monitoring and relief efforts. 53 

Flood detection has a history in satellite remote sensing that dates back to the 1970s. 54 

Imagery from the NOAA (National Oceanic and Atmospheric Administration) VHRR (Very 55 

High Resolution Radiometer) and AVHRR (Advanced Very High Resolution Radiometer) 56 

served as the main data sources for flood/standing water detection prior to the development of 57 

the MODIS (Moderate Resolution Imaging Spectroradiometer) system. Many case studies 58 

have been conducted to analyze severe flood events all over the world. These studies laid a 59 

foundation for the methods and approaches of flood detection with 60 

coarse-to-moderate-resolution satellite data (Wiesnet et al., 1974; Barton and Bathols, 1989; 61 

Ali, 1989; Sheng and Xiao, 1994; Sheng et al., 1998; Sheng and Gong, 2001). With coarse 62 

1-km spatial resolutions, however, VHRR and AVHRR data could only show the macro flood 63 
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distributions of select major floods and failed to address any inundation details. To resolve 64 

this issue, Landsat imagery with a 30-m spatial resolution is widely used as an alternative in 65 

flood detection, disaster assessment and flood pattern analysis (Gupta and Bodechtel, 1982; 66 

Gupta and Banerji, 1985; Wang et al., 2002; Mueller et al., 2016; Fisher et al., 2016; Tulbure 67 

et al., 2016). Although VHRR, AVHRR and Landsat imagery play effective roles in flood 68 

mapping, the flood detection capabilities of these optical sensors can be severely affected by 69 

cloud cover during flood periods. To derive flood information under cloud cover, radar remote 70 

sensing satellites and imaging systems such as Radarsat, SAR, TerraSAR-X and Sentinel-1 71 

are becoming more popular in flood monitoring and analysis. Their high spatial resolution and 72 

capability to penetrate cloud cover make radar data very popular in hydrological fields for 73 

multiple-scale flood mapping, flood management and disaster relief (Brakenridge et al., 1993; 74 

Matgen et al., 2007; Schumann et al. 2007; Martinis et al., 2009; Matgen et al., 2011; 75 

Pulvirenti et al., 2011; Martinis et al., 2013). 76 

Although Landsat and radar imagery have excellent capabilities for flood mapping, the 77 

narrow swath widths and long revisit periods of their sensors are major drawbacks. Because 78 

most floods are short-term events, it is not realistic to completely rely upon these images for 79 

flood mapping and management purposes. In comparison, moderate-spatial-resolution 80 

satellites provide steadier and lower-cost data sources for near real-time flood mapping. After 81 

the EOS (Earth Observing System) flagship Terra was launched in 1999, MODIS has 82 

gradually become the preferred satellite instrument for flood detection because of its daily 83 

global coverage and higher spatial resolution of the visible, near infrared (250 m) and 84 

shortwave infrared (500 m) channels compared to the 1-km resolution channels with the 85 
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AVHRR (Gumley and King, 1995; Brakenridge and Anderson, 2006). Newer algorithms such 86 

as the decision-tree approach and the open water likelihood method have used MODIS to 87 

more accurately detect flooding and standing water (Sun et al., 2011; Ticehurst et al., 2014; 88 

Ticehurst et al., 2015). The continuous observations from MODIS also make it possible to 89 

analyze flood inundation dynamics and generate global water masks from multiple-year 90 

detected results (Carroll, et al., 2009; Andrimont et al., 2012; Huang et al., 2014). In 2011, an 91 

experimental global flood detection system using MODIS imagery was released by NASA 92 

(National Aeronautics and Space Administration) (http://oas.gsfc.nasa.gov/floodmap). This 93 

system processes near real-time MODIS data and generates 1-day, 2-day, 3-day and 14-day 94 

composite global flood products for 10°×10° tiles from the MODIS instrumentation aboard 95 

the Terra and Aqua satellites (Brakenridge, 2011). The system also provides systematic 96 

datasets with a robust interface to access the products. The multiple-day composition process 97 

is applied mainly in order to filter out cloud shadows and terrain shadows, and it produces 98 

multiple-day composite flood maps rather than near real-time ones. The problem with the 99 

multiple-day composition process is that some real floodwater data may be lost in the 100 

composition process, and the process introduces a bias in the experimental MODIS flood 101 

maps. Even after the composition process has finished, cloud shadows can persist in the 102 

MODIS flood products, especially at high latitudes. More recently, the HAND (height above 103 

nearest drainage) algorithm has been applied to MODIS flood detection attempts with a better 104 

removal of terrain shadows. The accuracy of MODIS flood products are still susceptible to 105 

deep terrain shadows that cannot be filtered either through multiple-day compositions or the 106 

HAND algorithm (Brakenridge, 2011; Liu et al., 2016). 107 
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With the launch of the Suomi-NPP in 2012, the VIIRS sensor has exhibited many 108 

advantages over MODIS data in environmental and natural disaster monitoring and analysis. 109 

SNPP/VIIRS imagery has a moderate spatial resolution of 375 m in the shortwave IR bands, a 110 

swath coverage width of 3000 km, and a relatively constant resolution across the scan. These 111 

new features make SNPP/VIIRS data an excellent source for near real-time flood detection. 112 

With the support of the JPSS/PGRR program since 2013, VNG Flood V1.0 has been 113 

developed using SNPP/VIIRS imagery to derive near real-time flood maps for the National 114 

Weather Service (NWS) River Forecast Centers (RFC) in the USA. A series of algorithms 115 

have been developed in the software, including those for water detection, cloud shadow 116 

removal, terrain shadow removal, minor flood detection, water fraction retrieval, and 117 

floodwater determination. The successful development of the cloud shadow and terrain 118 

shadow removal algorithms promises consistent results and makes the detection of near 119 

real-time flooding feasible and operational using moderate-resolution satellite data. This 120 

paper presents a comprehensive introduction to the software, describes the required datasets, 121 

introduces the algorithms, presents the results, and concludes with a summary discussion. 122 

2. Data used 123 

The main datasets used for flood detection with the VIIRS imagery are the SNPP/VIIRS 124 

SDR (sensor data record) data in imager bands 1 (600~680 nm), 2 (850~880 nm), 3 (1610 nm) 125 

and 5 (1050~1240 nm) with nominal resolutions of 375 m and I-band terrain-corrected 126 

geolocation data, which includes longitude, latitude, solar zenith angles, solar azimuth angles, 127 

sensor zenith angles and sensor azimuth angles (GITCO). The SNPP/VIIRS 750-m resolution 128 

cloud mask intermediate product (IICMO) and M-band terrain-corrected geolocation data 129 
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(GMTCO) are used to help determine the cloud cover. Because VIIRS SDR data and IICMO 130 

data are stored in swath granules with an hdf5 format, a module was developed to project the 131 

VIIRS swath granules between 80°S and 80°N into an equidistant cylindrical projection based 132 

on MS2GT0.24 (https://nsidc.org/data/modis/ms2gt/index.html). In addition to the 133 

SNPP/VIIRS SDR and EDR (earth data record) datasets, static ancillary datasets are also 134 

utilized to assist with water detection and flood determination. These ancillary datasets 135 

include global land cover from the IGBP, global land/sea masks, digital elevation models 136 

(DEMs) from the SRTM-2 (Shuttle Radar Topography Mission version 2) and ASTER 137 

(Advanced Spaceborne Thermal Emission and Reflection Radiometer), MODIS 250-m global 138 

water masks (MOD44 W) (Rabus et al., 2003; Tachikawa et al, 2011; Carroll, et al., 2009), 139 

and water layers from the 2006 30-m National Land Cover Database (Xian, et al., 2009). 140 

3. Methods 141 

3.1 Physical basis 142 

Water detection with vegetation and bare land background conditions using optical 143 

satellite data is primarily based on the spectral differences between water features and other 144 

land cover types in the visible (Vis, VIIRS I1 band: 600~680 nm), near infrared (NIR, VIIRS 145 

I2 band: 850~880 nm) and shortwave infrared (SWIR, VIIRS I3 band: 1580~1640 nm) 146 

channels (Wiesnet et al., 1974; Barton, 1989; Sheng and Xiao, 1994). As shown in Fig. 1, 147 

water has a higher reflectance in the Vis channel than in the NIR and SWIR channels. 148 

Vegetation is more reflective in the NIR channel than in the Vis channel. The reflectance of 149 

bare land increases with increasing wavelengths with a maximum in the SWIR channel, 150 

whereas the reflectance of water is close to 0 in the SWIR channel. Based on these spectral 151 

characteristics, several variables, including the NDVI (normalized difference vegetation 152 
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index), NDSI (normalized difference snow index) and NDWI (normalized difference water 153 

index), are widely applied for water detection purposes. The NDVI, NDSI and NDWI are 154 

defined hereinafter (Rouse, et al., 1965; Sellers 1985; Xiao, et al., 2001; Gao, 1996; Ceccato, 155 

et al., 2002). 156 

NDVI = ���	
���
���	����
                              (1) 157 

NDSI = ���

����	���
�����	                             (2) 158 

NDWI = ���	
����	���	�����	                            (3) 159 

In Equations (1) through (3), ���� is the reflectance in the Vis channel, ���� is the 160 

reflectance in the NIR channel, and ����� is the reflectance in the SWIR channel. These 161 

three indices show similar or better discriminatory capabilities in water detection than ����, 162 

����  and ����� . However, the three indices are unable to independently differentiate 163 

floodwater from other land types. Instead, the combination of these variables forms the basis 164 

of a robust flood detection technique. 165 
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 166 

Fig. 1 Plot of reflectance of different land types from VIS to SWIR band range (Zhang et al., 167 

2008) 168 

Unlike water detection with a background of vegetation and bare land, floodwater with 169 

a background of snow/ice reflects much more greatly in the Vis and NIR channels due to the 170 

mixture of snow/ice signals but retains the features with higher reflectance in the Vis channel 171 

more than those in the NIR channel (Liang et al., 2012; Johansson and Brown, 2013; Lesson 172 

et al, 2013). The detection of floodwater also depends on similar variables: ����, ���� and 173 

NDVI. Melting snow/ice surfaces and shadows that are cast on snow/ice surfaces can be 174 

confused with supra-snow/ice water because of similar spectral features in these three 175 

variables. To solve this problem, a new DNDVI variable is defined as the NDVI difference 176 

between a pixel and the surrounding snow/ice surface. With similar ���� and ���� values, a 177 

melting snow surface and shadows that are cast on a snow surface have smaller negative 178 
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DNDVI values than those of supra-snow/ice water. Fig. 2 presents four scatter plots collected 179 

from approximately 50 VIIRS granules mainly during the spring break-up seasons in Alaska 180 

during 2014, 2015 and 2016, and they contain information regarding supra-snow/ice 181 

floodwater (black), shadows over snow surfaces (blue) and melting snow surfaces (red). The 182 

relationship between ���� and the NDVI is shown in Fig. 2 (a), Fig. 2 (b) compares ���� 183 

with the NDVI, the ���� and DNDVI relationship is shown in Fig. 2 (c), and Fig. 2(d) 184 

compares ���� with the DNDVI. Fig. 2 illustrates that melting snow surfaces and shadows on 185 

snow surfaces have similar values among the three variables (����, ���� and NDVI) and that 186 

they overlap with the scatter plot for supra-snow/ice water (Fig. 2 (a) and Fig. 2 (b)). 187 

However, the populations of the melting snow samples and shadow samples separate from 188 

those of the supra-snow/ice water samples with the DNDVI (Fig. 2 (c) and Fig. 2 (d)). Based 189 

on this, the combined use of these four variables can provide an effective approach for 190 

supra-snow/ice water detection. 191 
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 192 

Fig.2 Scatter plots of supra-snow/ice water (black), supra-snow/ice shadow (blue) and melting 193 

snow (red) surface in VIIRS imagery: (a) ���� and NDVI; (b) ���� and NDVI; (c) ���� and 194 

DNDVI; (d) ���� and DNDVI  195 

3.2 Challenges 196 

Although the spectral features of water surfaces are different from those of other land 197 

types, automatic near real-time flood detection remains challenging. The biggest challenge is 198 

the presence of cloud shadows. Cloud shadows and floodwaters are difficult to differentiate 199 

because they share similar spectral features in the Vis, NIR, SWIR, and thermal infrared 200 

channels. Geometry-based algorithms help to remove cloud shadows but are still limited due 201 

to the uncertainties regarding the cloud mask, cloud height, and cloud optical thickness. 202 

The second challenge is the presence of terrain shadows. Like cloud shadows, terrain 203 

shadows share similar spectral characteristics to water and therefore cannot be spectrally 204 

distinguished from floodwater (Ticehurst et al, 2014). Unlike cloud shadows, which tend to 205 
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change between overpass times, terrain shadows can remain for a long time. In some cases, a 206 

terrain shadow may persist for an entire winter season because of high solar zenith angles 207 

(especially at high latitudes). Cloud shadows and terrain shadows limit the autonomous flood 208 

detection in near real-time using optical satellite imagery. In addition to shadows, some dark 209 

land surfaces can exhibit similar spectral features to floodwater. For example, burn scar areas 210 

covered with a thin cover of snow can be confused with floodwater.  211 

Other floodwater detection challenges are related to the natural environment and the 212 

physical properties of floodwater. Because a flood is an overflow of water that submerges or 213 

"drowns" land, floodwaters are impacted by the underlying conditions. Floods occur over 214 

vegetation or bare soil in the mid-latitudes, while floods occur more often over snow/ice 215 

surfaces at high latitudes and during mid-latitude winters. A mixed situation may be further 216 

complicated by the moderate spatial resolution (375 m) of SNPP/VIIRS imagery. Minor to 217 

moderate floods, which occur most frequently in the USA, may elude detection because of 218 

their weak water signal in comparison to the surrounding land signal. Some floodwaters may 219 

be masked by vegetation cover or urban development, which weaken the water signals 220 

measured by satellite imagers. Under some conditions, water surfaces are contaminated by 221 

sun glint and show substantially different spectral features in the Vis, NIR and SWIR 222 

channels relative to glint-free water surfaces. 223 

3.3 .  Algorithm development 224 

To conquer the above challenges, the algorithm development in VNG Flood V1.0 225 

includes a series of steps ranging from water detection, cloud shadow removal, terrain shadow 226 

removal, minor flood detection, and water fraction retrieval to floodwater determination. The 227 

details of these primary algorithms in VNG Flood V1.0 are presented in the following 228 
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sections from Section 3.3.1 to Section 3.3.6, and the specific algorithm flow is shown in 229 

Section 3.4. 230 

3.3.1 Water detection 231 

Based on the underlying conditions, floods can be divided into two types: 232 

supra-vegetation/bare soil floods (hereafter referred to as a supra-veg/bare soil flood) are the 233 

most common, and supra-snow/ice floods are generally limited to rivers flowing from low 234 

latitudes to high latitudes during spring snowmelt/break-up periods. These two flood types 235 

show different spectral features, and therefore, water detection is divided into two types: 236 

supra-veg/bare soil water detection and supra-snow/ice water detection.  237 

In SNPP/VIIRS imagery, pixels are first classified into three types: cloud cover, 238 

snow/ice cover and land/water. Cloud cover is masked using the SNPP/VIIRS 750-m cloud 239 

mask intermediate product (IICMO). Snow/ice cover is flagged with the 375-m snow cover 240 

product or by running a snow detection module (Tsugawa, R. and James, B., 2011) and is then 241 

subjected to supra-snow/ice water detection tests. The remaining pixels are classified as 242 

clear-sky land or water, which are subjected to supra-veg/bare soil water detection tests with a 243 

decision-tree approach using the following variables: R���, R� !, R"# !, NDVI, NDSI and 244 

NDWI (Sun et al., 2012; Li and Sun, 2013). The decision trees are pre-trained based on 245 

different land cover types under different solar zenith angles by collecting approximately 246 

600,000 samples from more than 500 VIIRS granules covering North America, Africa, 247 

Europe, Asia and Australia. These pre-trained decision trees are used to separate 248 

supra-veg/bare soil water pixels from clear-sky land pixels. 249 

Supra-snow/ice water detection constitutes an additional step because most 250 
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supra-snow/ice water locations are counted as covered by snow/ice using snow/ice detection 251 

algorithms prior to water detection. A threshold segmentation method is used with the 252 

variables ���� , ���� , NDVI and DNDVI. Based on the analysis of approximately 100 253 

VIIRS granules, the reflectance of supra-snow/ice floodwater varies from 40% to 80% in the 254 

visible channel and from 15% to 80% in the near-infrared channel, and the NDVI ranges from 255 

-0.6 to -0.04. In comparison, the reflectance of shadows over snow/ice surfaces ranges from 256 

15% to 65% in both the visible and near-infrared channels, and the NDVI ranges from -0.3 to 257 

0.05. Melting snow surfaces have a reflectance that ranges from 50% to 100% in the visible 258 

and near-infrared channels while the NDVI ranges from -0.1 to 0.05. For a snow/ice pixel, if 259 

it meets the conditions in Equation (4), it is directly classified as a supra-snow/ice water pixel 260 

without any further processing. If a snow/ice pixel meets the conditions in Equation (5), it is 261 

then classified as a possible supra-snow/ice water pixel and is tested further against the 262 

DNDVI parameter. 263 

$ ���� ≥ 45%NDVI ≤ −0.2                                     (4) 264 

$ ���� ≥ 40%−0.2 < NDVI ≤ −0.04                             (5) 265 

The calculation of the DNDVI is a dynamic process within a moving 50×50 window 266 

(Liang et al., 2012; Johansson and Brown, 2013). For a possible supra-snow/ice water pixel, 267 

the maximum reflectance in the visible channel (R���_012) of all the snow/ice pixels (based on 268 

the snow/ice cover mask) in the neighboring 50×50 window is calculated. If they meet the 269 

conditions in Equation (6), the snow/ice pixels are collected and used to calculate the average 270 

NDVI of the background snow/ice surface (NDVI3333333). The DNDVI is calculated by subtracting 271 

NDVI3333333 from the NDVI of a possible supra-snow/ice water pixel. 272 
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4����_012 − 10% ≤ ���� ≤ ����_016���� ≥ 55%NDVI ≥ −0.05                            (6) 273 

The DNDVI is more effective in differentiating supra-snow/ice water from shadows 274 

over snow surfaces and melting snow surfaces. Based on a sample analysis from 275 

approximately 100 VIIRS granules, most shadows over snow surfaces with DNDVI values 276 

below -0.05 have a reflectance of less than 45% in the visible channel, and those with a 277 

reflectance that is larger than 45% in the visible channel mostly exhibit a DNDVI value above 278 

-0.05. Melting snow surfaces generally exhibit DNDVI values above -0.05. In comparison, 279 

supra-snow/ice water demonstrates DNDVI values below -0.07, which shows a strong 280 

relationship with the reflectance in the near-infrared channel. Therefore, if a pixel meets the 281 

condition in Equation (7), then it is removed from the possible supra-snow/ice water pixels. 282 

This process removes most melting snow and some of the shadows that are cast upon snow 283 

surfaces from supra-snow/ice water pixels. 284 

DNDVI > −0.06                               (7) 285 

The above processes separate most of the water pixels from land and snow/ice cover 286 

pixels. However, cloud shadows and terrain shadows still need to be removed, or else they 287 

will be counted as water. 288 

3.3.2 Cloud shadow removal 289 

Because cloud shadows are not spectrally different from floodwater, a geometry-based 290 

method can be used to remove cloud shadows from water maps (Khlopenkov and 291 

Trishchenko, 2007; Hutchison et al., 2009; Li et al., 2013). In this method, a spherical 292 

geometry model is established between cloud shadows and clouds and is then iteratively 293 

applied to construct a one-to-one relationship based on the assumption that one cloud pixel 294 
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casts, at most, one cloud shadow pixel. If the position of a cloud pixel B (lon<,lat<) in the 295 

VIIRS imagery is known, the position of that cloud pixel P (lon?,lat?) can be located by 296 

calculating an arc using the sensor azimuth angle φ<. 297 

lat? = sin
C[sinElat<F × cos ?<I! + cosElat<F × sin K?<I! L × cosφ<]   (8) 298 

lon? = lon< + tan
C[ ��N OP×��NQPIR ×ST�EU1VPFST�QPIR 
��NEU1VPF×��N EU1VQF]           (9) 299 

The Earth’s radius is R, and the arc PBI  is the parallax distance between the real cloud 300 

position P and the cloud position in the satellite imagery B. 301 

Given the cloud position P (lon?,lat?), the cloud shadow position A (lonZ, latZ) in the 302 

VIIRS imagery can be calculated using the solar azimuth angle φ? by considering the shadow 303 

length PAI . 304 

latZ = sin
C[sinElat?F × cos ?ZI! + cosElat?F × sin K?ZI! L × cosφ?]   (10) 305 

lonZ = lon? + tan
C[ ��N OQ×��NQ\IR ×ST�EU1VQFST�Q\IR 
��NEU1VQF×��N EU1V\F]        (11) 306 

In Equations (8) through (11), PAI  and PBI  can be calculated as arcs along a circle 307 

with a radius R using a shadow angle α and a parallax angle β. The shadow angle α 308 

and parallax angle β are derived using Equation (12): 309 

δ = cos
C ^E!�_F`
Ea!×!×ST�`b  � _×E_ �c!F
!×ST� bF`� !`c.d×!×E!�_F e         (12) 310 

where δ represents the shadow angle α or parallax angle β, R is the Earth’s radius, h  is the 311 

cloud height, and θ is the zenith angle. 312 

In contrast, if the shadow position A (lonZ, latZ) is known, then Equations (8) through 313 

(12) can also be used to predict the cloud position B (lon<, lat<) on the spherical surface in the 314 

VIIRS imagery. 315 
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Based on the geometric model over a spherical surface, an iteration method is further 316 

applied to the cloud height, which is the only unknown variable in Equations (8) through (12), 317 

to construct a one-to-one relationship between the cloud and cloud shadow using a group of 318 

adjacent cloud and cloud shadow pixels. Here, the cloud height is coarsely estimated using 319 

cloud top temperatures and nearby clear-sky land surface temperatures under average 320 

atmospheric temperature profiles. Tests conducted on a large amount of VIIRS imagery and 321 

more than three years’ worth of demonstrations have proven that this method removes more 322 

than 90% of the cloud shadows from VIIRS flood maps. 323 

3.3.3 Terrain shadow removal 324 

Similar to cloud shadows, most terrain shadows are classified as floodwater during 325 

water detection. To remove terrain shadows, an object-based method is applied using 375-m 326 

DEM data resampled from SRTM-2 and ASTER data based on the surface roughness (Li et 327 

al., 2015). Because terrain shadows generally appear in mountainous topography, the surface 328 

roughness is usually much larger than floodwater, which mainly accumulates in low-lying 329 

areas (where the surface roughness is lower) (Shepard et al., 2001; Thompson et al., 2011). 330 

The method is object-based, and thus, a surface roughness analysis is performed on a group of 331 

adjacent pixels instead of on single pixels. Water pixels are clustered into a group and viewed 332 

as one object for calculating the surface roughness parameters. A floodwater object is 333 

determined as a terrain shadow if it meets the conditions in Equation (13): 334 

f ≥ 60, or, gfV_ ≤ f < 60 h1ij ≥ h1ij_V_|hl|  ≥ 3no ≤ 1 , or, g fV_ + 5 ≤ f < 60h1ij ≥ h1ij_V_ + 20|hN|  ≥ 3po ≤ 5%, rst no > 1        (13) 335 

where f is the root-mean-square height, h1ij is the internal height difference between the 336 
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average heights of the higher surface and the lower surface, hN is the external height 337 

difference between the average heights of neighboring non-shaded or non-flooding land 338 

pixels and the average heights of terrain shadow or floodwater pixels, no is total number of 339 

normal water pixels, po is the percentage of normal water pixels, and fV_ and h1ij_V_ are 340 

the empirical thresholds of f  and h1ij , which are related to the total number of 341 

water/shadow pixels and the total length in both the horizontal and vertical directions in an 342 

object. 343 

This method has been applied to the removal of terrain shadows from VIIRS flood maps. 344 

A validation analysis has shown that this method removes more than 95% of the terrain 345 

shadows from VIIRS flood maps, and it also helps to remove other false water detection 346 

results, such as some residual cloud shadows, dark lava land and burn scars (Li et al., 2015). 347 

3.3.4 Minor flood detection 348 

At a 375-m spatial resolution, water signals from many minor floods are too weak to be 349 

detected in VIIRS imagery, especially when floodwaters are veiled by vegetation cover or 350 

urban development. The majority of floods in the USA are minor floods, but they still attract 351 

the attention of river forecasters. Change detection is used as the main approach to detect 352 

minor floods around water pixels, as confirmed in the steps described from Section 3.3.1 to 353 

Section 3.3.3, and existing rivers, lakes, and reservoirs in ancillary water reference maps. The 354 

method determines a minor water pixel either by comparing water signals from before and 355 

after flooding or by comparing water signals with surrounding confirmed clear-sky land 356 

pixels that have similar land cover types to the minor water pixel. 357 

For automatic near real-time flood detection, less dependence is placed on historic data 358 
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in favor of an additional comparison with surrounding clear-sky land pixels. For a confirmed 359 

water pixel, the average reflectance in the near-infrared and shortwave infrared channels are 360 

calculated in neighboring 50×50 windows for vegetation (����_�33333333, �����_�3333333333) and bare land 361 

(����_u333333333, �����_u3333333333), respectively. Land pixels around the confirmed water pixel, which cannot 362 

be 30 m higher in elevation than the confirmed water pixel, are then used within a reflectance 363 

comparison relative to the average reflectance. If it meets the conditions in Equation (14), a 364 

vegetation pixel is determined as a minor water pixel; meanwhile, if a bare land pixel meets 365 

the conditions in Equation (15), then it is determined as a minor water pixel. 366 

vwx
wy �� ! ≤ 26%�"# ! ≤ 15%����_�33333333 − �� !  ≥ 8%�����_�3333333333 − �"# ! ≥ 4%NDSI > −0.12

                             (14)367 

vwx
wy �� ! ≤ 25%�"# ! ≤ 17%����_u333333333 − �� !  ≥ 7%�����_u3333333333 − �"# ! ≥ 8%NDSI > −0.15

                             (15) 368 

3.3.5 Water fraction retrieval 369 

Due to the moderate spatial resolution of the VIIRS data, most detected flood pixels are 370 

a mixture of water and other land types, such as vegetation, bare soils or snow/ice. The water 371 

fraction, which is defined as the percentage of the water surface in a satellite pixel, represents 372 

the flood status more accurately than a simple water/no water mask classification (Sheng and 373 

Gong, 2011). For flood detection using VNG Flood V1.0, only supra-veg/bare soil 374 

floodwaters are retrieved for the water fractions. A dynamic nearest neighbor search (DNNS) 375 

method based on a linear combination model is applied by considering the varying sub-pixel 376 

land portion in a land-water mixed pixel and counting the adjacent land pixels with similar 377 
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mixture ratios to estimate the reflectance of the land for the retrieval (Li et al., 2012). The 378 

linear combination model for the water fraction retrieval is expressed in Equation (16): 379 

|} = �~��� 
 �����~��� 
 ������                          (16) 380 

where ���6 is the reflectance of a land-water mixed pixel, which is directly obtained 381 

from the VIIRS imagery, ���l� is the reflectance of pure land that meets condition (16), and 382 

 �}����  is the reflectance of a pure water surface, which is calculated as the average 383 

reflectance of adjacent pure water pixels. Because  �}����  is small in the Vis and NIR 384 

channels and is close to 0 in the SWIR channel, the accuracy of |} largely depends on 385 

���l�. By combining the Vis, NIR and SWIR channels, ���l� is calculated as the average 386 

reflectance of pure land pixels located nearby that meet conditions in Equation (17), after 387 

which it is then applied in Equation (16) to calculate |}. An evaluation analysis shows that 388 

the method performs more robustly than the traditional histogram method for the retrieval of 389 

supra-veg/bare land water fractions, especially when the sub-pixel land portion contains 390 

complex land types (Li et al., 2012). 391 

 392 

 393 

                                                394 

                                                                   (17) 395 

3.3.6 Flood determination 396 

The retrieved supra-veg/bare soil water fractions are compared against the water 397 

reference map, which is a combination of the MODIS 250-m global water mask and the water 398 

layer in the 30-m National Land Cover Dataset (for the USA). The MODIS 250-m global 399 

water mask is resampled to a 375-m water/no water mask using a nearest neighbor 400 
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interpolation method to spatially match it with the VIIRS imagery, while the 30-m National 401 

Land Cover Dataset is resampled to a 375-m water mask by calculating the water fractions in 402 

375-m grids. In the USA, where a water reference map is equipped with water fraction 403 

information, if the water fraction of a pixel in the water reference map is less than 1% (which 404 

makes it a land pixel), then the floodwater is determined directly and represented with the 405 

retrieved fraction. If the water fraction of a pixel is more than 1% in the water reference map, 406 

then the floodwater is only determined if the retrieved water fraction is at least 40% larger 407 

than that in the water reference map. In regions outside of the USA where water reference 408 

maps are made using the MODIS water/no water mask, a water pixel is directly determined as 409 

floodwater and assigned with its retrieved water fraction if it is a non-water (land) pixel in the 410 

water reference map. 411 

To differentiate ice from water using supra-veg/bare soil in VIIRS flood maps, 412 

supra-snow/ice water is classified as one type and represented in a simple water/no water 413 

mask without any fraction retrieval data. Supra-snow/ice floodwater can also be determined 414 

by comparing it against the water reference map; however, supra-snow/ice water within river 415 

channels and lakes is retained to reflect information on the river/lake ice status.  416 

Therefore, in VIIRS flood maps, supra-veg/bare soil floodwater pixels are represented 417 

with fractions ranging from 1% to 100%, which provides end-users with more detail on the 418 

extent of flooding, while supra-snow/ice water is represented as an independent water/no 419 

water type without fraction retrieval and flood determination information. 420 

3.4 Algorithm process 421 

The algorithm steps detailed in Section 3.3 are integrated into VNG Flood V1.0 for near 422 

real-time flood detection. VIIRS SDR data and EDR products undergo a re-projection process, 423 
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the flood detection algorithm is run, and the imagery is finally produced. Fig. 3 presents the 424 

specific algorithm processing flow of the software. The flood detection process starts by 425 

applying the VIIRS cloud mask to remove cloud cover. Next, snow/ice cover is flagged using 426 

VIIRS snow/ice detection. Based on the snow/ice cover, the threshold segmentation method 427 

shown in section 3.3.1 is applied to determine supra-snow/ice water pixels. The rest of the 428 

clear-sky pixels are classified with a decision-tree approach as described in section 3.3.1 for 429 

vegetation, bare soil and supra-veg/bare soil water. All of the detected water pixels (including 430 

the supra-snow/ice water pixels and supra-veg/bare soil water pixels) are subjected to the 431 

geometry-based cloud shadow removal algorithm shown in section 3.3.2 (to remove cloud 432 

shadow pixels) and the object-based terrain shadow removal algorithm presented in section 433 

3.3.3 (to remove terrain shadows). Most shadow pixels are identified by one of these shadow 434 

detection processes, and those that remain are categorized as water pixels. Based on the 435 

supra-veg/bare soil water pixels and water bodies defined in the water reference map, a 436 

change detection approach described in section 3.3.4 is used to identify water pixels in minor 437 

flood detection that were not detected by the decision-tree approach. A DNNS method 438 

presented in section 3.3.5 is then utilized to retrieve the supra-veg/bare soil water fractions. 439 

The retrieved supra-veg/bare soil water fractions are further compared against the water 440 

reference map to determine the floodwater using the method shown in section 3.3.6. 441 

Ultimately, there are eight pixel types in the final VIIRS flood map: cloud, snow cover, 442 

river/lake ice cover, shadows (including cloud shadows and terrain shadows), clear-sky land 443 

(including vegetation and bare soil), normal open water, supra-snow/ice water, and 444 

supra-veg/bare soil flooding water fractions. 445 
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 446 

Fig.3 Algorithm flow chart of VNG Flood V1.0 447 

4. Results 448 

4.1 Applications 449 

During a demonstration project operated by the JPSS PGRR Program since 2014, the 450 

developed VNG Flood V1.0 has been running routinely for five river forecast centers in the 451 

USA at two locations that process VIIRS direct broadcast data in near real-time: the Space 452 

Science and Engineering Center at the University of Wisconsin-Madison 453 

(SSEC/UW-Madison) and the Geographic Information Network of Alaska at the University of 454 

Alaska-Fairbanks (GINA/UAF). The flood maps are distributed via the Unidata Local Data 455 

Manager (LDM) and are reviewed by river forecasters in AWIPS-II. Additionally, these near 456 

real-time flood maps are available in the SSEC Real Earth application for Internet users to 457 
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browse via a web link: http://realearth.ssec.wisc.edu/?products=RIVER-FLDall-US. During the 458 

demonstration, VIIRS near real-time flood products are evaluated by river forecasters using 459 

aerial photos and river gauge observations. The flood products have been increasingly used as 460 

a tool to help issue operational flood forecasts. The evaluations have shown that the products 461 

perform robustly and have detected many floods accurately, including some minor floods. 462 

Positive responses have been received from river forecasters who cite the product as being a 463 

near real-time resource capable of providing useful situational awareness information for 464 

flood monitoring and forecasting. 465 

4.1.1 Application in dynamic flood extent monitoring 466 

The most straightforward application of the VIIRS flood products is dynamic flood 467 

extent monitoring, which makes the product an important data source for river forecasters to 468 

stay aware of flooding situations. With VIIRS near real-time flood maps, floodwaters can be 469 

identified and dynamically monitored. Compared to binary water/no-water flood products, 470 

floodwater fractions provide more details of the flood extent and intensity. Fig. 4 presents 471 

four flood maps during the December 2015 Mississippi River flood. In Fig. 4, the spatial 472 

distribution of the floodwater extent is shown throughout the Illinois River Basin, the Ohio 473 

River Basin and the Lower Mississippi River Basin clearly and continuously. These flood 474 

products were monitored through this event and provided river forecasters with valuable 475 

situational awareness information that was incorporated into the forecasting process. The 476 

wide coverage, moderate spatial resolution and frequent observations reflect the unique 477 

advantages of VIIRS imagery for near real-time flood mapping in comparison to imagery 478 

from other satellites such as Landsat. 479 
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VNG Flood V1.0 is designed for flood mapping in any land region between 80°S and 480 

80°N using VIIRS global imagery, and thus, its flood detection capabilities, which have 481 

frequently been applied to flood mapping during flood events in Asia, Australia, Africa and 482 

South America, have also been extended to regions outside of the USA. Fig. 5 shows two 483 

example flood maps for Australia and Peru. Fig. 5 (a) is a flood map in Queensland, Australia, 484 

on 31 Mar. 2017 at 04:19 (UTC) after cyclone Debbie struck the region. Fig. 5 (b) is a flood 485 

map in Peru on 23 Mar. 2017 at 18:45 (UTC). In Fig. 5, the floodwater extent is clearly 486 

demonstrated and represented with water fractions. These flood maps may help river 487 

forecasters and decision-makers to investigate flood statuses in a timely manner. 488 



26 

 

 489 

Fig. 4 SNPP/VIIRS near real-time flood detection maps in the Mississippi River Basin 490 

between 01 Jan. 2016 and 12 Jan. 2016: (a) 01 Jan. 2016 18:45 (UTC); (b) 03 Jan. 2016 19:48 491 

(UTC); (c) 10 Jan. 2016 19:18 (UTC); (d) 12 Jan. 2016 18:40 (UTC) 492 
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 493 

Fig. 5 SNPP/VIIRS near real-time flood detection maps in Australia and Peru: (a) VIIRS 494 

flood map in Queensland, Australia on 31 Mar. 2017 04:19 (UTC); (b) VIIRS flood map in 495 

Peru on 23 Mar. 2017 18:45 (UTC) 496 

4.1.2 Application in snow-melt and ice-jam flood prediction and monitoring 497 

Most snowmelt and ice-jam floods can be observed continuously with VIIRS near 498 

real-time flood maps because they are less affected by cloud cover than floods caused by 499 

intense rainfall. Snow/ice cover available in the flood maps presents the details of ice-jam 500 

locations and snowmelt runoff progression, and floods can be tracked as an event develops, 501 

thereby providing important information for flood forecasting and early warning. Fig. 6 502 

shows a series of flood maps for the severe ice-jam flood near Galena, Alaska (AK) in 2013. 503 

On 26 May 2013 (Fig. 6 (a)), a larger section of the Yukon River near Galena, AK, was 504 

covered with river ice, and an ice jam formed downstream of Galena. On 27 May 2013 at 505 
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20:45 (UTC), ice break-up occurred in the upper river reaches, but the ice jam remained in 506 

place near Galena, causing water to back up and flood overland. Some flooded areas were 507 

seen developing near the jammed section (Fig. 6 (b)). The floodwater expanded rapidly, and 508 

two hours later, additional floodwater was detected (Fig. 6 (c)). As the flooding continued to 509 

expand overland, additional flooded areas appeared in the SNPP/VIIRS flood maps on 28 510 

May (Fig. 6 (d), Fig. 6 (e) and Fig. 6 (f)). On 29 May, the jam began to release and the pixel 511 

types changed from ice cover to overflow/mixed water and ice types (Fig. 6 (g)). On 30 May, 512 

the jam disappeared and the river became open as the floodwaters started to retreat (Fig. 6 (h)), 513 

and on 1 June, fewer floodwaters were detected as the flooding continued to recede (Fig. 6 514 

(i)). The continuous SNPP/VIIRS observations demonstrated the dynamic progress of this 515 

river ice-jam flooding event, and the information provided by the flood maps were very 516 

valuable for flood prediction and monitoring. 517 

 518 

Fig. 6 SNPP/VIIRS ice-jamming flood detection maps around Galena, Alaska of USA: (a) 26 519 

May 2013 20:45 (UTC); (b) 27 May 2013 20:27 (UTC); (c) 27 May 2013 22:04 (UTC); (d) 520 

28 May 2013 20:10 (UTC); (e) 28 May 2013 21:46 (UTC); (f) 28 May 2013 23:29 (UTC); (g) 521 

29 May 2013 21:29 (UTC); (h) 30 May 2013 21:11 (UTC); (i) 1 June 2013 22:13(UTC) 522 
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VIIRS flood products can be applied to many other areas. For example, the flooding 523 

water fraction product is an important input of a downscaling model to derive high-resolution 524 

flood maps (Li et al., 2013). The VNG Flood V1.0 product can also be used to discover new 525 

water bodies from impoundment projects or condition changes of seasonal lakes. Long-term 526 

VIIRS flood maps are a good data source for flood pattern analysis and wet agricultural area 527 

estimations (e.g., rice paddies). All of these applications offer proof of the high value of the 528 

near real-time flood product from SNPP/VIIRS imagery. 529 

4.2 Evaluation 530 

4.2.1 Visual Inspection 531 

In addition to near real-time processes, the product has also been evaluated offline with 532 

VIIRS imagery since 2013. Over 10,000 VIIRS granules have been tested and visually 533 

inspected with VIIRS false-color composite images with VIIRS imager bands 3 (red), 2 534 

(green) and 1 (blue). These granules cover most of the global land areas between 80°S and 535 

80°N year-round. Visual inspection consistently shows a promising product performance. Fig. 536 

7 depicts an example of the visual inspection validation. Fig. 7 (a) is a VIIRS false-color 537 

image on 19 May 2015 at 21:35 (UTC) in northern Alaska, and the corresponding VIIRS 538 

flood detection map is shown in Fig. 7 (b). In Fig. 7 (a), the cyan color indicates that there 539 

was still snow cover in that area, some clouds (shown in light gray-white) and cloud shadows 540 

(darker gray). In the southeast part of the image, the topography causes some dark terrain 541 

shadows. During northern Alaska’s break-up and snow-melting season, ice jams and 542 

snowmelt atop the snow/ice surfaces often cause flooding. The situation in Fig. 7 (a) is a 543 

complex scene, yet Fig. 7 (b) shows realistic results from an automatic near real-time flood 544 
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detection product. Clouds are masked (shown in gray) and snow/ice cover is flagged (white). 545 

River/lake ice is detected (cyan), cloud shadows and terrain shadows are removed (dark gray), 546 

and supra-snow/ice water is depicted over some river channels and lakes (purple). 547 

Supra-veg/bare soil floodwaters are represented as water fractions (from light green to red), 548 

and the rest of the clear-sky land, including vegetation and bare soil, is shown in light brown. 549 

These consistent depictions indicate that the product performs well under complex weather 550 

and ground conditions. 551 

 552 

 553 

Fig.7 (a) SNPP/VIIRS false-color composite image in north Alaska on 19 May 2015 21:35 554 

(UTC); (b) SNPP/VIIRS flood detection map in north Alaska on 19 May 2015 21:35 (UTC) 555 

4.2.2 Comparison with MODIS automatic flood products 556 

MODIS experimental automatic flood products were publicly released in 2011 by 557 

NASA based on Dartmouth’s flood detection algorithms, and they are available in 2-day, 558 

3-day and 14-day composite flood maps at the following website: 559 

http://oas.gsfc.nasa.gov/floodmap. During some flood events, daily near real-time (1-day) 560 

flood maps are also available at this website. To remove cloud shadows and terrain shadows, 561 
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a composition process is applied based on multiple-day flood maps. This process sometimes 562 

misclassifies floodwater as shadows and under-reports floodwater in the MODIS 2-day and 563 

3-day composite flood maps. VNG Flood V1.0 removes cloud shadows and terrain shadows 564 

during each overpass and is therefore able to produce near real-time flood maps with less 565 

shadow bias. Fig. 8 presents an example showing the differences between the two flood 566 

products during the January 2017 California flood. Fig. 8 (a) is MODIS false-color composite 567 

image on 11 Jan. 2017 at 19:10 (UTC) that was downloaded from the MODIS Today, website 568 

(http://ge.ssec.wisc.edu/modis-today), and Fig. 8 (b) is a MODIS flood map using 1-day, 2-day 569 

and 3-day composite floodwater shapefiles downloaded from the following website: 570 

http://oas.gsfc.nasa.gov/floodmap. In Fig. 8 (b), blue colors represent floodwater in the MODIS 571 

3-day composite floodwater layer from 09-11 Jan. 2017, green and blue colors represent 572 

floodwater in the MODIS 2-day composite floodwater layer from 10-11 Jan. 2017, and red, 573 

green and blue show MODIS 1-day near real-time floodwater on 11 Jan. 2017 at 19:10 (UTC). 574 

An SNPP/VIIRS false-color composite image and the corresponding automatic flood 575 

detection map on 11 Jan. 2017 at 21:16 (UTC) produced by VNG Flood V1.0 are shown in 576 

Fig. 8 (c) and (d), respectively. In the MODIS false-color image (Fig. 8 (a)), the floodwaters 577 

are visible as dark blue. Most of these floodwaters are successfully identified in the MODIS 578 

1-day floodwater layer (red, green and blue in Fig. 8 (b)). However, many cloud shadows and 579 

terrain shadows are misclassified as floodwater. The composition process results in fewer 580 

cloud shadows in the 2-day composite floodwater layer (green and blue in Fig. 8 (b)), but 581 

much of the valid floodwater identified in the 1-day floodwater layer is removed. Furthermore, 582 

the 3-day composite floodwater layer (blue in Fig. 8 (b)) has almost no shadows, but almost 583 
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all of the floodwater is removed as well. The weather conditions changed slightly between the 584 

19:10 (UTC) Terra-MODIS overpass and the 21:16 (UTC) SNPP-VIIRS overpass, and those 585 

cloud cover changes resulted in some different areas where the floodwater is obscured by 586 

clouds. Despite these complex conditions, which are depicted in the VIIRS false-color 587 

composite image (Fig. 8 (c)), the VNG flood detection results (Fig. 8 (d)) are still highly 588 

consistent with the false-color composite image. Overall, the floodwater detected in the 589 

VIIRS flood map corresponds well with the flooding that is apparent in the imagery as well as 590 

the 1-day MODIS floodwater layer. Cloud shadows and terrain shadows (dark gray in Fig. 8 591 

(d)) have been separated from the floodwater in the VNG flood product more effectively than 592 

in the MODIS flood product. 593 

Two days later, on 13 Jan. 2017, clear skies offered a good view of the flooding in 594 

California. Because there were clear skies on 11 Jan. and 13 Jan. 2017, but there were 595 

partially cloudy skies on 12 Jan. 2017, the MODIS 2-day composite floodwater layer from 596 

12-13 Jan. (green and blue in Fig. 9 (a)) show similar floodwaters as those in the 3-day (from 597 

11 Jan. to 13 Jan.) composite floodwater layer (blue in Fig. 9 (a)). However, around the 598 

mountains (especially in the southern region), some terrain shadows erroneously appear as 599 

floodwaters in the MODIS 2-day composite floodwater layer. With the further application of 600 

the composition process, most of the terrain shadows in the 2-day composite floodwater layer 601 

disappeared in the MODIS 3-day composite floodwater layer. Compared with the MODIS 602 

flood products, a similar floodwater distribution was depicted, but the terrain shadows along 603 

the mountains were accurately identified in the VNG flood map (Fig. 9 (b)). 604 
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 605 

Fig. 8 (a) MODIS false-color composite image on 11 Jan. 2017 at 19:10 (UTC); (b) MODIS 606 

near real-time, 2-day and 3-day composited flood map in California, USA on 11 Jan. 2017; (c) 607 

SNPP/VIIRS false-color composite image on 11 Jan. 2017 at 21:16 (UTC); (d) SNPP/VIIRS 608 
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near real-time flood map produced by VNG Flood V1.0 on 11 Jan. 2017 at 21:16 (UTC) 609 

 610 

Fig. 9 (a) MODIS false-color composite image on 13 Jan. 2017 at 19:00 (UTC); (b) MODIS 611 

2-day and 3-day composited flood map in California, USA on 13 Jan. 2017; (c) SNPP/VIIRS 612 
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false-color composite image on 13 Jan. 2017 at 20:38 (UTC); (d) SNPP/VIIRS flood map 613 

produced by VNG Flood V1.0 on 13 Jan. at 20:38 (UTC) 614 

To further analyze the differences between the two flood products, the MODIS 250-m 615 

floodwater datasets in California on 11 Jan. and 13 Jan. 2017 are resampled to a 375-m spatial 616 

resolution for a comparison with the VIIRS flood datasets pixel-by-pixel. The floodwaters are 617 

interactively extracted, or manually extracted and corrected via visual inspection on 618 

multiple-channel satellite images, from the 11 Jan. MODIS data and the 13 Jan. VIIRS data 619 

and are further used as reference maps for comparison. Fig.10 (a) shows the interactively 620 

extracted floodwater from MODIS data on 11 Jan. 2017 19:10 (UTC), and VIIRS 621 

interactively extracted results on 13 Jan. 2017 20:38 (UTC) are presented in Fig.10 (b). The 622 

total number of floodwater pixels (n�����) is calculated from the MODIS near real-time 623 

(1-day), 2-day composite and 3-day composite floodwater datasets and the VIIRS near 624 

real-time floodwater datasets. If a floodwater pixel is correspondingly shown in the reference 625 

map, then that pixel is considered a true floodwater pixel, and thus, n� represents the total 626 

number of true floodwater pixels. If a flood pixel in the reference map is shown as clear-sky 627 

land in either the MODIS or VIIRS flood map, then that pixel is considered an undetected 628 

floodwater pixel, and thus, the total number of undetected floodwater pixels is n�. The false 629 

detection ratio p�, detection accuracy rate p�, and omission ratio (undetected ratio) p� are 630 

calculated in Equations (18), (19) and (20), respectively, as follows: 631 

p� = �����~
�������~ × 100%                           (18) 632 

p� = �������~��� × 100%                           (19) 633 

p� = ������� × 100%                           (20) 634 
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 635 

Fig. 10 (a) MODIS interactively extracted floodwater on 11 Jan. 2017 at 19:10 (UTC); (b) 636 

VIIRS interactively extracted floodwater on 13 Jan. 2017 at 20:38 (UTC) 637 

Table 1 lists the results for the Jan. 2017 California flood event from the MODIS and 638 

VIIRS data. From Table 1, the MODIS flood map on 11 Jan. 2017, detected 135,797 flood 639 

pixels altogether, but only 28,602 pixels were true floodwater pixels, and 8,286 flood pixels 640 

remained undetected. The false detection ratio was approximately 78.94%. With a 2-day 641 

composition process, only 22,384 flood pixels were detected, of which 16,732 pixels were 642 

true flood pixels. Compared to the MODIS near real-time flood detection results, the false 643 

detection ratio for the 2-day composition process decreased to 25.25%. However, the number 644 

of undetected flood pixels n� reached 20,156, resulting in a 54.64% omission ratio. After 645 

the 3-day composition process, only 1,435 flood pixels were detected, of which 1,129 pixels 646 

were true flood pixels. The false detection ratio decreased to 21.32%, but n� increased to 647 

35,759, and the omission ratio reached 96.94%, which indicates that most of the floodwater 648 



37 

 

pixels in the MODIS 3-day flood map were filtered out by the 3-day composition process. 649 

With more clear-sky weather conditions on 13 Jan., MODIS showed better detection results. 650 

In the MODIS 2-day composite flood map, 34,387 flood pixels were detected altogether, of 651 

which 24,362 pixels were true flood pixels. Approximately 16,982 flood pixels remained 652 

undetected. The false detection ratio and omission ratio were 29.15% and 41.07%, 653 

respectively. With a 3-day composition process, the MODIS results showed 29,572 detected 654 

flood pixels, 24,298 true flood pixels and 17,571 undetected flood pixels. The false detection 655 

ratio and omission ratio were 17.83% and 41.97%, respectively. In comparison, the VIIRS 656 

near real-time flood map on 11 Jan. 2017 detected 25,258 flood pixels, of which 23,773 pixels 657 

were true flood pixels. Approximately 4,257 flood pixels were undetected. The false detection 658 

ratio was only 5.88%, and the omission ratio was approximately 15.19%. With much better 659 

weather conditions on 13 Jan., the VIIRS flood map detected 42,499 flood pixels altogether 660 

on that day, of which 41,290 were true flood pixels. Only 23 flood pixels were undetected. 661 

The false detection ratio was 2.84%, and the omission ratio was only 0.06%. The difference 662 

of omission ratios between MODIS and VIIRS especially on Jan. 13 with clear-sky weather 663 

conditions might reflect the impact of minor flood detection on the product performance. 664 

With minor flood detection, pixels with small water fractions (water fraction from 25% to 665 

50%), most of which were detected as dry land in MODIS flood maps, were detected as water 666 

in VIIRS flood maps, resulting in larger omission ratios of MODIS flood maps but smaller 667 

ones of VIIRS flood maps. The results of the comparison indicate more steady detection for 668 

VNG Flood V1.0 compared to that of the MODIS flood maps for both complex and clear-sky 669 

weather conditions. The improved performance, especially with regard to the removal of 670 
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cloud shadows and terrain shadows, guarantees the near real-time flood detection capability 671 

of VNG Flood V1.0 and the quality of VIIRS flood product. 672 

Table 1 Comparison between MODIS flood product and VIIRS flood product  673 

 
Dates Composition ������ �� �� 

�� 

(%) 

�� 
(%) 

�� 

(%) 

MODIS 

11 Jan. 

near real-time 135,797 28,602 8,286 78.94 19.85 22.46 

2-day composite 22,384 16,732 20,156 25.25 39.33 54.64 

3-day composite 1,435 1,129 35,759 21.32 3.04 96.94 

13 Jan. 
2-day composite 34,387 24,362 16,982 29.15 47.43 41.07 

3-day composite 29,572 24,298 17,571 17.83 51.54 41.97 

VIIRS 
11 Jan. near real-time 25,258 23,773 4,257 5.88 80.55 15.19 

13 Jan. near real-time 42,499 41,290 23 2.84 97.10 0.06 

4.2.3 Validation with Landsat-8 OLI imagery 674 

Landsat-8 OLI imagery is a good data source to validate the VIIRS flood product. The 675 

validation is performed in two ways: 1) overlapping the VIIRS flood products onto Landsat-8 676 

OLI images at a 30-m resolution; and 2) degrading the Landsat-8 OLI images to a 375-m 677 

resolution for a comparison with the VIIRS flood products. The first method can be done via 678 

SSEC’s Real Earth (http://realearth.ssec.wisc.edu/) visualization tool. Here, the near real-time 679 

availability of both the VIIRS flood products and the Landsat-8 OLI images in the web 680 

browser interface makes it easy to overlap the products and imagery. More than 50 Landsat-8 681 

OLI images have been utilized for validation since 2015 in the USA, and the results are quite 682 

promising. Fig. 10 presents an example for Texas on 06 June 2016. Fig. 11 (a) is a Landsat-8 683 

OLI image acquired at 16:50 (UTC), wherein the dark blue areas are floodwater. The VNG 684 

flood map from 19:43 (UTC) is an overlay on top of the OLI image in Fig. 11 (b). From Fig. 685 

11, although the cloud conditions are slightly different between the two observations, over 686 

clear-sky regions, the VIIRS flood detection results over clear-sky regions were consistent 687 
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with those of the Landsat-8 OLI imagery. VNG Flood V1.0 accurately detected the most 688 

floodwater with larger water fractions (i.e., more red) in the VIIRS flood map corresponding 689 

to more floodwaters (i.e., more dark blue) in the Landsat-8 image. This type of performance is 690 

typical for other Landsat/SNPP validation comparisons. 691 

 692 

Fig. 11 (a) Landsat-8 OLI false-color composite image in Texas, USA on 06 June 2016 at 693 

16:50 (UTC); (b) VIIRS flood detection map on 06 June 2016 at 19:43 (UTC) overlaid on top 694 

of the OLI image from Fig. 10 (a) 695 

To provide a quantitative validation, the Landsat images are remapped to a 375-m 696 
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resolution for a comparison with the VIIRS flood maps. The comparisons are limited due to 697 

numerous differences, including those pertaining to the image modeling, calibration, 698 

geolocation accuracy for satellite images at different spatial resolutions, viewing geometry, 699 

and overpass times (Schroeder et al., 2008; Li. et al., 2012). More than 10 Landsat 30-m 700 

images were remapped to spatially match with the VIIRS flood detection results. Cases were 701 

selected to include supra-veg/bare soil floods and supra-snow/ice floods. In the Landsat 702 

images, water was extracted interactively to generate 30-m water masks, after which the water 703 

fractions were calculated in 375-m grids to compare them against the VIIRS water fraction 704 

maps. Fig. 12 presents three pairs of flood maps containing pairs of 375-m remapped Landsat 705 

flood maps and VIIRS flood maps. Fig. 12 (a) is a resampled Landsat-7 ETM 375-m water 706 

fraction map on 13 Jan. 2013 in the Sacramento Valley of California, USA, and its 707 

corresponding SNPP/VIIRS flood map is shown in Fig. 12 (b). Fig. 12 (c) and Fig. 12 (d) 708 

represent another pair of flood maps from Landsat-7 ETM (Fig. 12 (c)) and SNPP/VIIRS (Fig. 709 

12 (d)) data on 13 Jan. 2017 in California. Fig. 12 (e) presents a 375-m water fraction map 710 

from Landsat-8 OLI on 01 April 2015 along the Sag River in northern Alaska, USA, and the 711 

SNPP/VIIRS flood map on the same in the same region is shown in Fig. 12 (f). From Fig. 12, 712 

the VIIRS flood maps show a similar floodwater distribution with the Landsat flood maps, 713 

especially in regions with large water fractions. However, there are more small-water-fraction 714 

floodwater locations in the Landsat flood maps than in the VIIRS flood maps. This is 715 

reasonable because the signals from land are much stronger than those from water when the 716 

water fraction is small. Mixed water pixels in the VIIRS imagery exhibit a smaller signal than 717 

in the Landsat imagery due to the imager resolution, and it is therefore expected that the 718 
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VIIRS—or any imager with a similar spatial resolution—would have difficultly detecting 719 

mixed water pixels with low water fractions. Another issue is that, around pixels with large 720 

water fractions, the VIIRS water fraction retrieval shows larger results than those of the 721 

Landsat data. This difference may be caused by the difference between the VIIRS and 722 

Landsat in their image modeling, geolocation accuracy and viewing geometry. 723 

 724 

Fig. 12 Three pairs of flood maps for comparison between SNPP/VIIRS and Landsat imagery: 725 

(a) Landsat-7 ETM on 13 Jan. 2017 in California, USA, (b) the correspondent SNPP/VIIRS 726 

flood map of (a); (c) Landsat-7 ETM on 13 Jan. 2017 in California, USA, (d) the 727 

correspondent SNPP/VIIRS flood map of (c); (e) Landsat-8 OLI on 01 April 2015 along the 728 

Sag River in Alaska, USA, (f) the correspondent SNPP/VIIRS flood map of (e) 729 

For further validation, |D_WF|, which is defined as the absolute water fraction 730 

difference between the Landsat and VIIRS data, is calculated, and the statistics of the 731 

percentages of |D_WF| with different ranges are applied to reflect the detection and retrieval 732 
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accuracies. For supra-veg/bare soil floodwater, the percentages are calculated in three types: 1) 733 

|D_WF| < 100%; 2) |D_WF| < 30%; 3) |D_WF| < 20%. The first type actually ignores the 734 

water fraction difference between the Landsat and VIIRS data, and thus, it reflects the water 735 

detection accuracy; meanwhile, the other two types indicate the water fraction retrieval 736 

accuracy. For supra-snow/ice water without the water fraction retrieval, only the first type is 737 

calculated to derive the general detection accuracy. Approximately 50,000 valid samples were 738 

collected for supra-veg/bare soil floodwaters and 10,000 samples for supra-snow/ice water 739 

from approximately 10 Landsat images and VIIRS flood maps. Fig. 13 presents the validation 740 

results of the supra-veg/bare soil water detection, and the results of the supra-snow/ice water 741 

detection are shown in Fig. 14. From Fig. 13 and Fig. 14, the water detection and fraction 742 

retrieval accuracies increase with the water fraction, which is consistent with the results 743 

shown in Fig. 12 with a higher consistency over larger water fractions. For supra-veg/bare soil 744 

water, and for water fractions larger than 80%, the detection accuracy is approximately 95%, 745 

the water fraction retrieval accuracy with a |D_WF| of less than 30% is above 90%, and the 746 

water fraction retrieval accuracy with a |D_WF| of less than 20% is above 80%. When the 747 

water fractions are below 40%, the water detection accuracy is much higher than the water 748 

fraction retrieval accuracy, which somehow reflects that there are more uncertainties in the 749 

DNNS method for the water fraction retrieval over smaller-water-fraction pixels. The 750 

detection percentage of supra-snow/ice water reaches approximately 80% when the water 751 

fractions are above 80%, and it increases more linearly with the water fraction than 752 

supra-veg/bare soil water detection. Overall, the percentages of the supra-snow/ice water 753 

detection are approximately 20% less than the supra-veg/bare soil water detection accuracy. 754 
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This might be related to the higher reflectance of snow/ice surfaces than those of vegetation 755 

and bare soils in visible to near infrared channels. The stronger signals of snow/ice surfaces 756 

may bring about larger uncertainties in the detection of supra-snow/ice water. 757 

 758 

Fig. 13 Scatter plot of supra-veg/bare soil water detection percentage of VIIRS over water 759 

fractions from Landsat imagery 760 

 761 
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Fig. 14 Scatter plot of supra-snow/ice water detection percentage of VIIRS over water 762 

fractions from Landsat imagery 763 

5. Discussion 764 

With the support from JPSS/PGRR Program, VNG Flood V1.0 has been developed for 765 

automatic near real-time flood detection using SNPP/VIIRS data. Algorithms include water 766 

detection, cloud shadow removal, terrain shadow removal, minor flood detection, water 767 

fraction retrieval, and flood determination. With a demonstration project initialized by 768 

JPSS/PGRR Program, the software has been running routinely using direct broadcast VIIRS 769 

data in near real-time flood detection for five river forecast centers in the USA since 2014. 770 

The near real-time flood products are available in SSEC’s Real Earth and NOAA’s (National 771 

Oceanic and Atmospheric Administration) AWIPS-II, and have been carefully evaluated by 772 

river forecasters using aerial images and hydrologic observations. Offline evaluation is also 773 

done using VIIRS false-color images, MODIS automatic flood maps and Landsat imagery. 774 

The near real-time flood detection software has received a positive reception and increasing 775 

attention from end-users. 776 

Although VNG Flood V1.0 shows robust performance in flood automations, there are 777 

still some limitations and problems with the current VIIRS flood products. Cloud cover is the 778 

main limitation that sometimes prevents SNPP/VIIRS imagery from obtaining continuous 779 

flood observations. This is very common in detecting floods caused by intensive rainfall, 780 

when cloud cover may last for an extended period. Persistent cloud coverage may result in 781 

severe flood product latency and can be a limiting factor in flood prediction and early warning. 782 

The accuracy of cloud detection may also affect the omission ratio of VIIRS flood product. 783 
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Additionally, flash floods are not tracked well by the product. For flood extent investigation, 784 

cloud cover may also be an obstacle from deriving of maximal flood coverage from a single 785 

flood map and thus requires multiple-day maximal flood-extent composition process. 786 

The second problem is from cloud shadows. Most cloud shadows are removed from 787 

VIIRS flood maps. However, cloud shadows cast by some optically thin clouds may remain in 788 

the maps due to the uncertainty of cloud detection and underestimation of cloud heights, 789 

which is the primary error source of flood detection. For more accurate cloud shadow removal, 790 

VIIRS cloud type and cloud height products may be considered in future software iterations. 791 

The third problem comes from water fraction retrieval. Although the DNNS method 792 

shows good performance in supra-veg/bare soil water fraction retrieval, the validation 793 

analysis has shown that there is more uncertainty in water fraction retrieval on small-fraction 794 

water pixels than on large-fraction ones. Pixels with wet soil background may result in a 795 

larger water fraction retrievals bias, while pixels contaminated by sun glint or thin clouds may 796 

result in a low water fraction bias. Additional processing steps may be required for more 797 

robust water fraction retrieval over all conditions. 798 

The minor flood detection helps detect many minor to moderate floods in VIIRS flood 799 

maps. Soaked soils around rivers/lakes sometimes are counted as floodwaters due to lower 800 

reflectance than the surrounding land in visible, near infrared, and short-wave infrared 801 

channels. This is common along coastlines after tides retreat and the wet beach is detected as 802 

floodwater in VIIRS flood maps. Further, the method is limited when floodwaters are partially 803 

veiled by vegetation cover or urban landscapes. 804 

Despite the limitations in the current flood detection algorithms, the developed VNG 805 
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Flood V1.0 is still a useful tool for optical-satellite-based flood detection. With several 806 

challenges solved, the software shows promising performance in near real-time flood 807 

detection. The software has also laid a solid foundation to the work in the next stage. Based 808 

on 375-m floodwater fraction product, additional interesting work can be done to obtain more 809 

information on floodwater surface levels and depth. The spatial resolution of flood maps can 810 

be enhanced from the current 375 m to 30 m or even 10 m with high-resolution DEM data, 811 

which provides much more inundation detail than the current 375-m flood maps (Li et al., 812 

2013). Future capabilities will be incorporated into the second generation VNG Flood V2.0 813 

that will generate 3-D floodwater maps using SNPP/VIIRS imagery. 814 

6. Conclusion 815 

This study presents a comprehensive introduction to VNG Flood V1.0, and can be 816 

summarized as follows: 817 

1. The VIIRS NOAA/GMU Flood Version 1.0 software has been developed for 818 

automatic near real-time flood detection using SNPP/VIIRS imagery. Floods are 819 

divided into two types: supra-veg/bare soil floods and supra-snow/ice floods. A 820 

series of algorithms, including water detection, cloud shadow removal, terrain 821 

shadow removal, minor flood detection, water fraction retrieval, and floodwater 822 

determination, have been developed and integrated into the software. With several 823 

challenges resolved, the software shows a high feasibility for applications in near 824 

real-time flood mapping at the product level. 825 

2. The software has been running routinely at the SSEC and GINA using direct 826 

broadcast VIIRS data to generate near real-time flood maps for the National 827 
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Weather Service River Forecast Centers in the USA since 2014. These flood maps 828 

have been reviewed by river forecasters and applied toward flood operations. Their 829 

applications to flood extent monitoring and snowmelt and ice-jam flood predictions 830 

have been demonstrated. 831 

3. An evaluation analysis confirms the robust performance of VNG Flood V1.0. The 832 

visual inspection, inter-comparison with MODIS flood products, and quantitative 833 

validation using Landsat imagery have all shown satisfactory performance. 834 
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DNDVI; (d) ���� and DNDVI  1013 

Fig.3 Algorithm flow chart of VNG Flood V1.0 1014 
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Fig. 5 SNPP/VIIRS near real-time flood detection maps in Australia and Peru: (a) VIIRS 1022 

flood map in Queensland, Australia on 31 Mar. 2017 04:19 (UTC); (b) VIIRS flood map in 1023 

Peru on 23 Mar. 2017 18:45 (UTC) 1024 

Fig. 6 SNPP/VIIRS ice-jamming flood detection maps around Galena, Alaska of USA: (a) 26 1025 

May 2013 20:45 (UTC); (b) 27 May 2013 20:27 (UTC); (c) 27 May 2013 22:04 (UTC); (d) 1026 

28 May 2013 20:10 (UTC); (e) 28 May 2013 21:46 (UTC); (f) 28 May 2013 23:29 (UTC); (g) 1027 

29 May 2013 21:29 (UTC); (h) 30 May 2013 21:11 (UTC); (i) 1 June 2013 22:13(UTC) 1028 

Fig.7 (a) SNPP/VIIRS false-color composite image in north Alaska on 19 May 2015 21:35 1029 

(UTC); (b) SNPP/VIIRS flood detection map in north Alaska on 19 May 2015 21:35 (UTC)  1030 

Fig. 8 (a) MODIS false-color composite image on 11 Jan. 2017 at 19:10 (UTC); (b) MODIS 1031 

near real-time, 2-day and 3-day composited flood map in California, USA on 11 Jan. 2017; (c) 1032 

SNPP/VIIRS false-color composite image on 11 Jan. 2017 at 21:16 (UTC); (d) SNPP/VIIRS 1033 

near real-time flood map produced by VNG Flood V1.0 on 11 Jan. 2017 at 21:16 (UTC) 1034 

Fig. 9 (a) MODIS 2-day and 3-day composited flood map in California, USA on 13 Jan. 2017; 1035 

(b) SNPP/VIIRS flood map produced by VNG Flood V1.0 on 13 Jan. at 20:38 (UTC) 1036 

Fig. 10 (a) MODIS interactively extracted floodwater on 11 Jan. 2017 at 19:10 (UTC); (b) 1037 

VIIRS interactively extracted floodwater on 13 Jan. 2017 at 20:38 (UTC) 1038 

Fig. 11 (a) Landsat-8 OLI false-color composite image in Texas, USA on 06 June 2016 at 1039 

16:50 (UTC); (b) VIIRS flood detection map on 06 June 2016 at 19:43 (UTC) overlaid on top 1040 

of the OLI image from Fig. 10 (a) 1041 

Fig. 12 Three pairs of flood maps from SNPP/VIIRS and Landsat imagery: (a) Landsat-7 1042 
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ETM on 13 Jan. 2017 in California, USA, (b) the correspondent SNPP/VIIRS flood map of 1043 

(a); (c) Landsat-7 ETM on 13 Jan. 2017 in California, USA, (d) the correspondent 1044 

SNPP/VIIRS flood map of (c); (e) Landsat-8 OLI on 01 April 2015 along the Sag River in 1045 

Alaska, USA, (f) the correspondent SNPP/VIIRS flood map of (e) 1046 

Fig. 13 Scatter plot of supra-veg/bare soil water detection percentage of VIIRS over water 1047 

fractions from Landsat imagery 1048 

Fig. 14 Scatter plot of supra-snow/ice water detection percentage of VIIRS over water 1049 

fractions from Landsat imagery 1050 




